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A global asymptotic solution for the linear stability of this flow with respect to axi- 
symmetric disturbances is developed without invoking the usual quasi-parJlel flow 
assumption. This solution predicts the occurrence of quasi-periodic spatially amplified 
disturbances relatively near the apex, which ultimately are stabilized further down 
the cone by the relative increase in viscous forces associated with the progressive 
thinning of the film. The wave speed and wavelength of these disturbances are found 
to decrease with increasing distance from the apex. 

1. Introduction 
Considerable progress has been made in describing both the linear and nonlinear 

stability of parallel film flow. Parallel film flow implies that the basic or unperturbed 
film flow has only one non-zero velocity component and a constant film thickness. 
However, no systematic solution has been developed to describe the stability of a 
non-parallel film flow. This is not surprising since even the linear stability problem for 
a non-parallel flow necessitates solving partial differential equations rather than 
ordinary differential equations as occur for parallel flows. 

The stability of non-parallel flows has been analysed using three different ap- 
proaches: the quasi-parallel flow approximation; the local expansion approach; and, 
the method of multiple scales (also referred to as the WKB, ray, or slowly varying 
flow approximation method). The quasi-parallel flow approximation greatly simplifies 
the stability problem for non-parallel flows by assuming that the stability problem 
is described by the equations appropriate to a parallel flow. However, the exact 
basic flow velocity profile is used in these parallel flow equations, thus introducing 
the dependence on the streamwise co-ordinate. This approach is deficient in that 
it can determine only the local rather than the global stability; furthermore, it  does 
not take into account properly the effect of variation in the basic flow on the local 
growth. 

Lanchon & Eckhaus (1964) developed a rational method of approximation for the 
stability of Blasius boundary layer flow. Their method, which has been referred to as 
local expansion theory, involves a double expansion in powers of the inverse Reynolds 
number about some arbitrary downstream point. As such, this approach accounts for 
the variation in the basic flow on the local growth rate, but cannot determine the 
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complete solution as a function of the streamwise co-ordinate. Ling & Reynolds (1973) 
applied this method to the stability of the flat plate wake and two-dimensional jet as 
well as boundary-layer flow. However, these analyses have been shown to be incom- 
plete. Gaster (1974) comments that these solutions do not account for the effect of the 
vertical structure in the ordering of the terms in the expansion procedure. Saric & 
Nayfeh (1975) note that these local expansion solutions have been developed only for 
temporally growing disturbances and thus do not properly compare with experiments 
involving spatially growing modes. Joseph (1974) has pointed out that the zeroth- 
order approximation of the solution of Ling & Reynolds (1973) for the two-dimensional 
jet, which reduces to the quasi-parallel flow solution, is not uniformly valid. Joseph 
presents a formal theory of bifurcation which allows for a certain flexibility in the 
choice of a zeroth-order approximation, thereby circumventing this problem en- 
countered by nearly all the solutions advanced for the stability of non-parallel flows. 

More recent developments in the theory of nearly parallel flows have used some 
variation of the method of multiple scales. Bouthier (1972, 1973) applied this method 
to the Blasius boundary layer. He showed that for non-parallel flows the concept of 
amplification or attenuation depends on the quantity considered; for example, the 
stream function may be growing, whereas the velocity components may be decaying 
at some point in the flow. This implies that the critical Reynolds number and neutral 
stability curve will depend on the flow quantity considered. Bouthier compared hia 
predictions for the neutral stability curve based on the local kinetic energy, with the 
data of Ross et al. (1970) and obtained good agreement. 

Gaster (1974) also applied the method of multiple scales to the Blasius boundary 
layer using a somewhat different formalism which accounted for the effect of the 
vertical structure in ordering the terms in the expansion procedure. He determined 
the neutral stability curves based on two integral measures of the kinetic energy 
and on the axial velocity evaluated at some selected position in the boundary layer. 
However, he obtained only qualitative agreement with the data of Schubauer & 
Skramstad (1948) and Ross et al. (1970). 

Nayfeh, Mook & Saric (1974) developed a multiple scales expansion solution in 
rectangular co-ordinates, rather than similarity variables, for the Blasius boundary 
layer and for Falkner-Skan flows. Eagles & Weissman (1 975) claim that the solution 
of Nayfeh et al. does not include the downstream variation of the eigenfunction in the 
expressions for the wavenumber and amplification rate. However, this effect may be 
insignificant at large Reynolds numbers since Nayfeh et al. obtain excellent agreement 
with the data of Schubauer & Skramstad and Ross et al. In  this comparison they b w  
their neutral stability curves on a zero spatial amplification factor normalized outside 
the boundary layer. Their choice of this flow quantity upon which to base their 
neutral stability curves accounts for why they obtained much better agreement with 
the available data than did Gaster (1 974). 

Eagles & Weissman (1975) have applied the method of multiple scales to describe 
the linear stability of slowly varying flow in a diverging straight-walled channel. 
They find the spatial growth rate to be a function of both the streamwise and cross- 
stream variables. Thus, the disturbances can pass successively through regione of 
growth and decay, however, far downstream all waves decay. They also comment that 
the growth or decay of the various flow quantities can be determined either absolutely 
or relative to the basic flow which is evolving aa the disturbance grows. 
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The multiple scales method also can be applied to the stability of basic flows whose 
rate of change is slow in time rather than space. Hall & Parker (1976) have used this 
method in describing the linear stability of laminar flow in a suddenly blocked channel. 
They found that the quasi-steady flow approximation is a uniformly valid approxi- 
mation for large Reynolds numbers. 

The solutions discussed thus far have applied to flows characterized by large 
Reynolds numbers. DiPrima & Stuart (1972) applied the method of multiple scales 
to the low Reynolds number flow between eccentric rotating cylinders. Their non- 
parallel flow solution predicts an increase in the critical Taylor number over that 
predicted by the quasi-parallel flow approximation, 

This brief review indicates that no systematic solutions have been developed for a 
non-parallel free surface flow for which the effects of surface tension and viscosity are 
significant. The analyses of Benjamin (1957) and Yih (1963) have established that 
parallel falling film flow is unstable with respect to long waves at very low Reynolds 
numbers. However, no attempt has been made to analyse the stability of a non- 
parallel film flow while invoking some rational method of approximation. 

This paper analyses the linear stability of axisymmetric disturbances on film flow 
down a right circular cone. A solution developed for the basic non-parallel flow is 
reviewed in $2 .  Section 3 develops a systematic solution to the associated linear 
stability problem. The theoretical predictions and conclusions are given in $9 4 and 5, 
respectively. The interested reader desiring more details on this development is 
referred to Zollars (1974). 

2. Basic flow solution 
Figure 1 shows a sketch of rippled film flow down a right circular cone. The insert 

on the left in this figure gives an over-all view of this flow. The planar section on the 
right shows an axisymmetric disturbance of amplitude i%(x, t )  superimposed on a basic 
film flow of non-constant thickness E(x). An x axis is placed along the surface of cone 
such that x = 0 is at the apex; a y axis is placed such that y = 0 is at the surface of the 
cone; a radial co-ordinate measured from the axis of symmetry is given by 

r = xsing+ y c o s g  

where B is the apex angle of the cone measured from the axis of symmetry. 
An asymptotic solution for the basic film flow has been developed by Zollars t 

Krantz (1976) via a perturbation expansion in a small parameter 6 which is a meaaure 
of the cross-stream to streamwise diffusion of vorticity. The resulting solution for 
the dimensionless stream function of the basic flow is given by 

4 12 = xsin$cos/3 

+xsin2,8(&,)z (z-T)  9 EoY2 +ResinBcos2,8 
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u 
FIGURE 1.  Geometry 

r = x sin 0 +)' cos /3 

for rippled film flow down a right circular cone. 

here Eo and E ,  are the zeroth- and first-order terms respectively in the solution for 
which is given in dimensionless form by 

where K = 3/(sinpcosP)+. In  arriving at  the above equations the variables p, x, y, 
and z were non-dirnensionalized with the scale factors 9, = Q/27rL, x,  = L, y, = h, E 
(Qv/27rgL)+, respectively; Q is the volumetric flow rate, v is the kinematic viscosity, 
g is the gravitational acceleration, and L is an unspecified length scale factor since 
t,here is no characteristic length in the streamwise direction. This non-dimensionali- 
zation introduces the Reynolds number Re = u,y,/v, Weber number We I a/pw," ye, 
and8 =_ y,/x,inwhich u, $,/xcye, CT is the surface tension, andp is the density. These 
scale factors are appropriate to a low-Reynolds-number flow in which the stream- 
wise gravity forces are balanced by the principal viscous forces. 

In arriving a t  (2.1) and (2.2) the following ordering arguments were made: 

Re = O( 1); l /r  = O( 1); and We = O( 1/13). 

These restrictions will be assessed quantitatively in 5 4. 

The first-order terms in 6 give the first-order inertial and lateral curvature corrections. 
Although this perturbation scheme could be carried out to include higher-order terms 
in 8, this is not necessary for the purposes of this paper. The effect of the first-order 
terms is to decrease the film thickness and to increase the basic flow velocity predicted 
by the zeroth-order solution. 

The zeroth-order terms in (2.1) and (2.2) correspond to the creeping flow solution. 
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3. Perturbed flow solution 
The equations of motion for an axisymmetric flow corresponding to the co-ordinate 

system shown in figure 1 are given by Millikan (1932) .  When appropriately non- 
dimensionalized they assume the following form : 

au av usinp+Svcosp -+-+ = 0;  
ax ay xsinp+&ycosP 

'OSp ) +cosp; (3 .2 )  
x (x sinp + sy cos 

sin p ) -sinp. (3 .3)  
x (x sinp + sy cosp 

The corresponding dimensionless boundary conditions are given by: 

u=O at y=O;  (3 .4)  

v = O  at y=O;  (3.5) 

($+P:) (1-S2h3-2S2h, (i: --- :?) = 0 at y = h; 

av hz ( + Re We [ P - P, - 2 s  - + 283 - - - - 
ay 1-h: ax ay (1 + Ph;)% 

= 0 a t  y = h. (3 .7 )  1 1 - Sh, tan ,!? 
(xtanp+Sh) (1 +a2h:)t 

- 

The film thickness is related to the velocity components by the surface kinematic 
condition given in dimensionless form by 

ah ah 
- + u - - a = O  at y = k .  
at ax 

In arriving at  the above equations the streamwise and cross-stream velocity 
components u and v, pressure P ,  film thickness h, and independent variables x, y 
and t were non-dimensionalized with the scale factors u, = (Q2g/4n2vL2)*, vc = Q/2nL2, 
P, = (Qp3g2v/2nL)f,  h, = y,, x,, yo and t, 5 x,/u, respectively, which were suggested 
by scaling the basic flow as described previously. The subscript x's, y's, and t's in these 
and subsequent equations denote differentiation with respect to x, y, or t respectively. 

The boundary conditions given by (3 .4 )  and (3 .5 )  are the no-slip and no-flow 
conditions at the solid surface. Those given by (3 .6 )  and (3 .7 )  are the tangential and 
normal force balances at the free surface; the latter includes the streamwise and 
lateral curvature effects given by the terms in brackets. Note that we have not 
attempted to satisfy any boundary conditions for specified values of x. This proves 
to be no limitation since we will solve this aystem of equations via a perturbation 
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expansion in 6. The resulting zeroth-order set of equations will not contain any 
derivatives with respect to x ,  and hence will not require any boundary conditions for 
this independent variable. 

Since this is an axisymmetric flow it is convenient to define a dimensionless stream 
function cb such that 

(3.9), (3.10) 

A solution for the complete stream function @ of the form @ = F ( x ,  y )  + $(x, y ,  t )  will 
be sought, where 3 is given by (2.1), and $ is the stream function of the perturbed 
flow. Similarly the overall film thickness is assumed to be of the form 

h(x, t )  = K ( x )  + $(z, t )  

where z is given by (2.2). These equations can be substituted into (3.1)-(3.8); the 
resulting equations when linearized in the perturbation quantities assume the following 
form : 

qY = o a t  y =  0, (3.12) 

GZ= o a t  y =  0, (3.13) 

+O(S2) = 0 a t  y = z, (3.15) 

The tangential and normal stress balances given by (3.14) and (3.15)) and the 
kinematic surface condition given by (3.16) have been applied at the perturbed free 
surface by expanding these conditions in a Taylor series about the basic film thickness 
and linearizing the resulting equations in the perturbation quantities. 

In  arriving a t  (3.11) through (3.15)) the same ordering arguments were used as in 
solving the basic flow problem. In particular, the ordering argument l /r  = 0(1) 
restricts our solution from describing the flow in the immediate vicinity of the apex 
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of the cone. Note that since r = xsin,8+ Sy cosp, those terms in (3.1 1) through (3.16) 
containing derivatives of r with respect to y are O(6) or smaller. 

For the low Reynolds number thin film flows being considered here, the charac- 
teristic length for the diffusion of vorticity in the cross-stream direction will be small 
compared with that for the diffusion of vorticity in the streamwise direction. There- 
fore the dimensionless parameter 6 will be small. Hence as was the case for the basic 
flow, a solution to (3.11) will be sought via a perturbation expansion in 6: 

# = $o+c9$,+62$2+... . (3.17) 

This method of solution was chosen rather than the method of multiple scales because 
it yields an analytical solution for the stability of long wavelength disturbqnces. 

When (3.17) is substituted into (3.11)-(3.15) and only zeroth-order terms in 6 are 
retained we obtain the following set of equations to be solved for Go: 

(3.18) 

(3.10) 

(3.20) 
- 

( G O ) Y Y + ~ ( F O ) Y Y Y  = 0 a t  Y = h, (3.21) 

( G O ) Y Y , + ~ ( T O ) , Y Y Y  = 0 at Y = h. (3.22) 

When the first-order terms in 6 are retained we obtain the following set of equations 
to be solved for Gl: 

- 

-- ::?,” (fO),,] = 0 at y = &, (3.26) 

(3.27) 
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Note that the streamwise and lateral curvature of the perturbed flow do not appear 
in (3.18) through (3.27) since these effects will appear only when higher-order terms 
in 6 are retained. However, the lateral curvature effect of the basic flow will be iptro- 
duced through the terms in 3, and its derivatives. 

The perturbation expansion scheme employed here greatly simplifies the solution 
of (3.11) because neither (3.18) for $, nor (3.23) for $, contains derivatives of these 
dependent variables with respect to x. The x dependence of $,, enters only through 
the tangential and normal stress boundary conditions given by (3.21) and (3.22), 
which are evaluated at E .  

The solution of (3.18) through (3.27) is straightforward and given by 

y6 E,y5 @y4 $ = ----- 

+ O(62). (3.28) 

The above can be substituted into the kinematic surface condition given by (3.16) 
to obtain the following differential equation to be solved for the disturbance amplitude 
i: 
it = - A  cos pK2x-# - 3 cos px-3 x - ~  148 Re x - ~  - 5 Re We Gcos$K --- +'( sin2p 3cosp 35sin2p 9 sin p 

cos px-2 x - ~  3 Re x-3 Re We 6 cos ,8K2x*)] 
+ 3sinp -~z[cospK2x-~+S ( -- 2sin2,8 +-- 3cosp 35sin2p 

- ixx6  (- 6 Re 5-2 
1 

(3.29) 

The above admits a solution of the form L(x, t )  = X(x) . T(t ) .  Allowing the separation 
constant to be either real or complex results in a solution for disturbances which grow 
both spatially and temporally. Hence, since disturbances in most film flows grow 
spatially the separation constant must be imaginary. It is interesting to note that 
although (3.29) admits purely spatially growing disturbances, it  does not admit purely 
temporally growing disturbances. 

The solution for T(t)  is found to be 

T = k e * W ,  (3.30) 

where ik8 is the separation constant and k is an integration constant. From the above 
we see that k8 = w the angular frequency. Hence the solution for X(x) is obtained from 

- cos px-2 x - ~  3 Re x-3 Re We 6 cos /?K~x+)] +-- x ax ( 2sh2p 3cosp 35sin2,!?+ 3sinp 
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--- 
sin2p 3cosp 35sin2p 9 sin /3 + 

(3.31) 

Seeking a solution to the above of the form X(x) = exp [f(x) + Sg(z) + 0 ( S 2 ) ]  and 
retaining terms through first-order in S yields 

k' 3x+ X+ 
X = - e x p  ( T i w  [ 5;:s ,!?+ (2K4 sin2 /3 00s ,8- K4 cosap 

X+ 

9 Re x-) 2w2Rex waxz 
- 70K4 sin2 $ cos2 ,O+ K2 Re sin We ,8 cos $ )] + (7- 2K6 cos4p 

- 2 x 4  17x4 11 R e x 3  Re weSx-zl)) (3.32) 
3K2 cos2,8- 8K2sin2p- 7K2sin2,5cosp-- 3 sinp ' 

where k' is an integration constant. 
Equations (3.30) and (3.32) can be combined to obtain the general solution for 

g(x, t). Recasting the exponentials corresponding to positive and negative values of 
the separation constant in terms of trigonometric functions then yields the following 
equation for Qx, t): 

e8Hz 
h = kA- co~[w(A'x-t)] x4 (3.33) 

where 

Re We (Yx-+ ) (3.34) 32%. x-f sinpx-Q 3Rex-% A' = 
5K2 cosp' ' (2K sinp- 3K cos2,8- 70K sinp cos/3+ K2 sinp cosp 

2wZRe u2sin2Fx 2 x 4  17x-) 11 Re x-Y B' = -- 
15 18 coszp- 3K2 cos2,!l- 8K2 sin2 p- 7K2 sin2 ,8 cos $ 

Re We Sx-3 

3 sin f l  - . (3.35) 

If (3.33) is recast in dimensional form, the unspecified scale factor L will necessarily 
cancel out. For purposes of generalizing these results and presenting them in useful 
graphical form, it is convenient to define a new length scale factor (&v/2ng)* and a 
new time scale factor (2nv3/&g3)i. These new scale factors are suggested by the 
dimensional form of (3.33) which then assumes the following form in terms of the 
redefined dimensionless variables h,, x,, and t,: 

(3.36) 

where k, is an unspecified integration constant equal to the dimensional initial ampli- 
tude of the infinitesimal disturbance, and 

3x$ x;) sinpxzf 3x,f 
(5K2 cosp' 2K sin /3- 3K cos2,i3- 70K sinp cosp 

A = A ,  
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11x;v 
+ A' 7K2 sin2p cos p 

and A ,  = w(27rv3/Qg3)k; A ,  = Q g * / ( 2 m s ) ;  and A ,  SE v/(pv*g*).  This choice of dimen- 
sionless groups is convenient since A ,  is a dimensionless disturbance frequency; A ,  
characterizes the dynamics of the flow; and A,  depends only on the fluid properties. 
Note that (3.36) indicates that infinitesimal disturbances on this flow will be quasi- 
periodic with dimensionless wavenumber A and dimensionless wave speed A J A  , both 
of which depend on the axial distance. 

4. Discussion 
This analysis for non-parallel film flow down a cone indicates that a disturbance 

of frequency w has a wave number and wave speed which are functions of the stream- 
wise co-ordinate, and a non-exponential spatial amplification factor. 

Equation (3.36) implies that this flow is stable since h ,  becomes zero for sufficiently 
large 2,. However, this does not imply that all disturbances decay everywhere in 
this flow. Indeed, (3.36) indicates that disturbances can be amplified locally both in 
an absolute and a relative sense. That is, if d[exp(Bx,)/x$]/dx, > 0 a disturbance 
of frequency w will experience an absolute increase in amplitude. However, if 
d[exp (Bx,)/E* x$Jdz, > 0 a disturbance of frequency w will increase in amplitude 
relative to the basic film thickness E ,  which decreases monotonically with distance 
from the apex of the cone. These two manifestations of local amplification will be 
referred to as absolute and relative growth, respectively. A similar distinction has 
been made by Eagles & Weissman (1975) in discussing the linear stability of slowly 
varying flow in a diverging channel. 

It is convenient to define a modified spatial amplification factor for absolute growth 
as follows: 

This modified spatial amplification factor has the property that if Q, > 0 the disturb- 
ance will be amplified. The neutral growth curve for absolute growth is defined by 
G ,  = 0. 

G, = B,,x,+B- 1/(3x*). (4.1) 

Substituting (3.38) into (4.1) yields 

All terms in (4.2) arise from the first-order terms in S except for term ( d )  which is a 
stabilizing effect arising from the zeroth-order thinning of the basic flow. Hence the 
zeroth-order solution to this stability problem predicts that all disturbances will decay 
everywhere in the flow; one must retain at least first-order terms in 6 to ascertain the 
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FIGURE 2. Neutral growth curves for A,  = 3388 and B = 30'. a,  absolute neutral growth; r ,  
relative neutral growth. 1, A,  = 340.6; 2, A ,  = 851.5; 3, A ,  = 1703. 

nature of the local amplification. Term (a )  in (4.2) is a destabilizing effect arising 
from the inertial transfer terms entering a t  first-order in the equations for the per- 
turbed flow. Term ( b )  is the first-order stabilizing effect of viscosity. The four terms 
denoted by (c) are first-order destabilizing effects arising from the increase in inertial 
transfer due to the increase in basic flow velocity associated with the first-order 
thinning effects in the basic flow film thickness. 

Similarly, a modified spatial amplification factor for relative growth can be defined 
as follows: 

G,. (Bz* X* + B )  &* - & * / ( 3 ~ * )  - zz,. (4.3) 

This has the property that if G,, > 0 the disturbance will grow relative to the basic 
film thickness. The neutral growth curve for relative growth is defined by G, = 0. 

G, = A;[(&) A$-  ( i )x ,  tan2/3]+x*C[(&) K tan/3+8K/tan/3]+z;YA2(w)K/sinP. 

Substituting (2.2) and (3.38) into (4.3) yields 

-+ - " 
(a) ( b )  (C) 

(4.4) 

Terms (a) ,  (b ) ,  and ( c )  appearing in the above have the same physical interpretation 
as do these terms appearing in (4.2). Note however, that term ( c )  no longer includes 
any surface tension effects, and that term ( d )  in (4.2) does not appear in (4.4). 

Figure 2 shows a plot of the dimensionless neutral growth frequency A ,  versus 
dimensionless axial distance x* for a water film (A3 = 3388) flowing down a 30" cone 
a t  dimensionless flow rates A ,  = 340.6, 851.5, and 1703, corresponding to the dimen- 
sional flow rates 0.1, 0.25, and 0 - 5 ~ m ~ s - l .  The three solid lines denoted by la,  2a, 
and 3a in this figure are the loci of those dimensionless frequencies for which G, = 0. 
The region above each of these solid lines corresponds to frequencies which are ampli- 
fied with respect to absolute growth; i.e. those for which Ca > 0 at that value of A,. 
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The region below corresponds to frequencies which decay with respect to absolute 
growth. Note that each of these curves is associated with an upstream point along the 
surface of the cone above which all frequencies are amplified, This point on the 
neutral growth curve is determined when term (c) is equal to term (d) in (4.2). For the 
three flow rates shown in figure 2 this upstream terminus of the neutral stability curve 
is given by 0.681 cm at A ,  = 340.6; 0.891 cm a t  A ,  = 851.5; and 1.18 cm at A ,  = 1703. 
Note also that each neutral growth curve for absolute growth appears to approach 
infinite frequency asymptotically at  some downstream position. This position, denoted 
by the dashed vertical line, is determined when term (a)  is equal to term (b)  in (4.2). 
Beyond this position all frequencies decay with respect to absolute growth, For the 
three flow rates shown in figure 2 this downstream terminus of the neutral growth 
curve is given by 5.73cm a t  A ,  = 340.6; 14.3cm at A ,  = 851.5; and 28.7cm at 
A ,  = 1703. Note that these three neutral growth curves are terminated at some higher 
frequency which is seen to decrease as the dimensionless flow rate A ,  increases. This 
upper frequency bound arises from our ordering argument Re = O( 1). This ordering 
argument was converted into an inequality by assuming it would be satisfied if 
Re < 0-1/6. The parameter 6 contains the unspecified characteristic length L which 
was chosen to be the local wavelength, by analogy with parallel film flows. Hence for 
a given fluid and specified volumetric flow rate the upper frequency bound is associated 
with that value of x* at which the local wavelength for neutral growth satisfies the 
equality in the inequality above. It would appear that the ordering argument 
1/r = O(1) would determine an upstream bound on the neutral growth curve. How- 
ever, this bound occurs somewhat upstream of the point above which all disturbances 
are amplified; hence, it does not prove to be limiting in practice. 

The three solid lines denoted by lr ,  2r, and 3r in figure 2 are the loci of those dimen- 
sionless frequencies for which G, = 0. For these curves the region below each solid 
line corresponds to frequencies which are amplified with respect to relative growth; 
i.e. for which G,. > 0 a t  that value of A,. The region above each solid line corresponds 
to frequencies which decay with respect to relative growth. The neutral growth curves 
for relative growth are terminated at  an upper frequency bound which is determined 
again by our ordering argument Re = O( 1). Equation (4.4) indicates that the neutral 
growth curves for relative growth asymptotically approach the line A ,  = 0 as x* +a. 
Thus there are some frequencies which are amplified in the relative growth sense at 
all positions along the surface of the cone. 

A physical interpretation of these neutral growth curves for both absolute and 
relative growth can be obtained by considering the magnitude of the various terms in 
(4.2) and (4.4). At small values of x* the sum of terms (a)  and (c) is greater than that 
of terms ( b )  and ( d ) ;  hence all disturbances are amplified with respect to both absolute 
and relative growth. As x* increases we reach a point at which term ( c )  becomes equal 
to term (d) ; hence zero frequency disturbances become neutrally amplified with 
respect to absolute growth. As x* increases further term (c) becomes insignificant and 
term (b)  becomes of increasingly greater importance, progressively stabilizing higher 
frequencies with respect to absolute growth. Eventually at  some x* terms (a )  and (a) 
become equal and all disturbances are stabilized with respect to absolute growth. 
Hence, in the case of figure 2 the inertial transfer from the basic flow velocity due 
to the disturbances is enhanced near the apex by the increase in basic flow velocity 
due to the first-order thinning effects. This destabilization is counteracted in part near 
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FIGURE 3. Modified spatial amplification factor for absolute growth, 
A,  = 0.01, A,  = 3388, and p = 30". 

the apex by the zeroth-order thinning of the basic flow. However, the principal 
stabilizing effect further downstream is contained in term ( b )  which represents the 
action of increasing viscous forces as the film progressively thins. Note that to the left 
of the dashed vertical line in figure 2 all disturbances are unstable with respect to 
relative growth since the stabilizing term (d) does not appear in (4.4). To the right of 
the vertical line term ( b )  is greater than term (a); hence as x* increases the destabilizing 
term ( c )  becomes progressively less significant. Thus, the flow is stabilized with respect 
to relative growth at progressively lower frequencies. 

The interplay of these various stabilizing and destabilizing factors can give rise to 
an interesting possibility as indicated by the slight local maxima in the three neutral 
growth curves for absolute growth in figure 2. For a specified flow rate of a given fluid. 
it  is possible for a small band of frequencies t o  be amplified near the apex of the cone; 
decay somewhat further down the cone; be amplified again yet further down the cone; 
and ultimately decay on the remainder of the cone. This possibility is demonstrated 
more clearly in figure 3 which shows a plot of G, as a function of x* for a disturbance 
having a dimensionless frequency A,  = 0.01; the cone angle, fluid, and dimensionless 
flow rates in figure 3 are the same as those of figure 2. Note that for the curve corres- 
ponding to A ,  = 1703 it is possible for the spatial amplification factor of this disturb- 
ance to change sign three times as the disturbance progresses down the cone. An 
increase in the dimensionless flow rate A ,  is seen to increase the spatial amplification 
factor. 

Equation (3.36) indicates that the dimensionless wave speed, given by c, = A,/A,  
is independent of the dimensionless frequency a t  the order in S which the stability 
problem has been solved here. Except for a relatively small region near the apex, the 
dimensionless wave speed is given by 



59 8 R. L. Zollars and W.  B. Krantz 

17.50 I I I I I 
I I 1 

14.00 

10.50 

4 ,  

7.00 

3.50 

0.00 
1 .o 2.5 4.0 5 . 5  7.0 8.5 

.y* 

FIGURE 4. Neutral growth curves for A ,  = 1.78 and /3 = 60'. a;, absolute neutral 
growth; r ,  relative neutral growth. 1, A ,  = 4.964; 2, A ,  = 6.619; 3, A ,  = 16-55. 

for x* B 1.  The corresponding local dimensionless wavelength is given by h = 2n/A 
= 2nc,/A1. Hence the local wave speed and wavelength decrease as a disturbance 
of fixed frequency progresses down the cone. 

Figure 2 indicates that an increase in dimensionless flow rate destabilizes the flow 
as one would expect. Parameter studies indicated that an increase in cone angle /3 
has a stabilizing effect on the flow as does a decrease in the dimensionless fluid 
properties group A,. 

The neutral growth curves do not always appear as those in figure 2. If one has 
highly stabilizing flow corresponding to a large cone angle p, small fluid properties 
group A,, and small dimensionless flow rate A,, the neutral growth curves may appear 
as those in figure 4. This figure is for a fluid ha.ving a properties group A ,  = 1.78, 
corresponding to a light mineral oil (p = 0.868 g cm-3; v = 1.686 cm s-l; and (r = 30.8 
dyncm-l a t  25OC) flowing down a 60' cone. The three dimensionless flow rates 
A ,  = 4.964, 6.619, and 16.55 correspond to dimensional flow rates of 7.5, 10.0, and 
25.0 cm3 s-l respectively. In  this case all disturbances below the neutral growth curves 
are amplified, whereas all disturbances above decay. Again the neutral growth curves 
for absolute growth are denoted by la ,  2a, and 3a, and those for relative growth by 
lr, 2r, and 3r. The physical interpretation of these neutral growth curves again can 
be obtained by considering the terms in (4.2) and (4.4). To the left of the vertical 
asymptote denoted by the dashed line, the sum of the destabilizing terms (a )  and (c) 
is greater than the sum of t,he stabilizing terms ( b )  and (d )  for all frequencies. At the 
vertical asymptote term (a )  is equal to term ( b ) ;  however, this occurs a t  a point 
sufficiently close to the apex so that term ( e )  is still of importance. Hence term (c) 
can still effect the destabilization of lower frequency disturbances at somewhat 
larger values of x*. As x* continues to increase term (b )  progressively increases and 
stabilizes lower frequencies as term (c) becomes less significant. Hence for highly 
stabilizing flow conditions the two destabilizing effects are significant only very near 
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the apex. Ultimately in the case of absolutely growing disturbances terms (c) and 
(d)  in (4.2) become equal; this determines a downstream point along the surface of the 
cone beyond which all disturbances decay with respect to the absolute growth. For 
the three flow rates shown in figure 4, the dimensional downstream bound on the 
neutral growth curves for absolute growth is given by 1.29 cm a t  A ,  = 4.964; 1.45 cm 
at A ,  = 6.619; and 2.19cm a t  A ,  = 16.55. However, since term (d) is not contained in 
(4.4), there is always a small band of long wavelength disturbances which are amplified 
with respect to relative growth. 

Notice that the long wave solution obtained here for film flow down a right circular 
cone does not reduce to the planar film flow solutions of Benjamin (1957) and Yih 
(1963) in the limit of /3 = 0. The ordering argument l/r = O( 1) precludes considering 
this limit process since the first term in the expansion of l/r for small S is l/(zsinP). 
Furthermore, the limit /3 = 0 would not yield the planar film flow solution since the 
lateral curvature effect is still retained in this limit. This limit then would correspond 
to the flow of a cylindrical film whose basic flow has a constant film thickness. An 
asymptotic long wave solution for the linear stability for the latter flow has been 
developed by Krantz & Zollars (1976). 

It is of interest to compare the results obtained here for the stability of non-parallel 
film flow to those obtained by Benjamin (1957) and Yih (1963) for planar film flow 
and by Lin & Liu (1975) and Krantz & Zollars (1976) for cylindrical film flow. 

The present results indicate that under some conditions, such as those of figure 2, 
all frequencies above the neutral growth curve for absolute growth are amplified; 
under other conditions, such as those of figure 4, all frequencies below the neutral 
growth curve for absolute growth decay. Which of these situations will prevail, 
depends upon the magnitude of the viscous stabilizing term associated with the film 
thinning, relative to the destabilizing terms in (4.2). In  contrast, parallel film flow 
analyses indicate that unstable frequencies always occur below the neutral stability 
curves for the surface of ' soft ' (as opposed to shear) instabilities being considered 
here. Furthermore an increase in surface tension, which is reflected in an increase in 
the properties group A,,  is found to have a destabilizing influence on non-parallel film 
flow, but a stabilizing effect on parallel film flow. 

These differences between the non-parallel and parallel film flow predictions arise 
in part from the surface tension effects which are neglected in the present analysis. 
When the ordering argument We = O( 1/6) is invoked, the only effect of surface tension 
included to terms of first order in S is that of the lateral curvature of the basic flow. 
This term accounts for the destabilizing influence of increasing surface tension; its 
effect is to thin the basic flow thereby increasing the basic flow velocity and associated 
inertial transfer terms in the equations for the perturbed flow. Krantz & Zollars also 
found the lateral curvature effect to be destabilizing for cylindrical film flow. The 
neglected surface tension effects include the streamwise curvature of the basic flow, 
and both the lateral and streamwise curvatures of the perturbed flow. Only the latter 
surface tension effect is relevant in the planar film analyses of Benjamin and Yih. The 
streamwise curvature of the perturbed flow stabilizes the flow to higher frequency 
short waves which have large curvature. This surface tension effect is the principal 
stabilizing effect in parallel film flow analyses and accounts for the stabilization of 
the higher frequency disturbances. The principal stabilizing influence in the present 
non-parallel film flow analysis is the thinning of the basic flow. 
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The neglected surface tension effect could be accounted for in the present analysis 
if second-order terms in 8 were retained. However, it is not feasible to carry out this 
perturbation solution analytically to higher-order terms owing to the extremely 
tedioua algebra involved. Alternately, these neglected surface tension effects would 
be included with first-order terms in 8 if the ordering argument We = O(l/P) were 
invoked. Unfortunately this ordering argument does not permit an analytical solution 
to the perturbed flow equations even at zeroth order. 
It is interesting to speculate as to the influence of these neglected surface-tension 

effects. The streamwise curvature of the perturbed flow clearly will stabilize the flow 
to higher frequencies, thus resulting in an upper branch of the neutral growth curve 
for absolute growth. Thus, only a finite band of frequencies will be amplified at any 
streamwise location. This effect will become progressively more important further 
down the cone since the wavelength of a given frequency decreases with streamwise 
distance. The lateral curvature of the perturbed flow will be a destabilizing effect, 
since the troughs of the waves have smaller radii of curvature than do the crests; the 
latter results in a capillary pressure force which induces flow from the troughs into 
the crests. It is difficult to conjecture as to the effect of the streamwise curvature of 
the bmic flow; its influence should be significant only at the apex of the cone where 
the streamwise curvature is appreciable. 

5. Conclusions 
An asymptotic long wave solution has been developed for the linear stability of 

axisymmetric disturbances on non-parallel film flow down a right circular cone. 
Spatially amplified, quasi-periodic wave forms are predicted. 

This solution indicates that although this flow is stable, some disturbances will 
always be amplified a t  least near the apex of the cone. These disturbances ultimately 
will be stabilized further down the cone owing to the decrease in local Reynolds 
number associated with the progressive thinning of the film. Hence, in contrast to 
parallel film flows, non-parallel film flow down a cone is only locally ‘unstable’ with 
respect to disturbances which grow in an absolute sense; that is, only certain regions 
of the cone are subject to amplified disturbances. Therefore film flow down a cone is 
globally asymptotically stable, but not uniformly asymptotically stable. Similar 
behaviour has been predicted by Eagles & Weissman (1975) for the linear stability of 
slowly varying flow in a diverging straight-walled channel. 

It is hoped that the solution presented here is a significant first step in our under- 
standing of non-parallel film flows which permits us to ascertain the principal effect 
of a decreasing local Reynolds number on the linear stability of this flow. 
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Technical University in Turkey, and an NSF-NATO Senior Fellowship in Science at 
the University of Essex in England. In  particular this author acknowledges the 
helpful comments concerning this work which he received from Professor T. Brooke 
Benjamin of the Fluid Mechanics Research Institute at the University of Essex. 
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